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Abstract

This note illustrates how a simple random walk with possibly long
jumps is related to fractional powers of the Laplace operator.

The exposition is elementary and self-contained.

‘‘Le discese ardite
e le risalite

su nel cielo aperto
e poi giù il deserto
e poi ancora in alto

con un grande salto...’’
(Lucio Battisti, ‘‘Io vorrei... non vorrei... ma se vuoi...’’)

The purpose of this note, which is mainly pedagogical, is to show in a simple,
concrete example how singular integrals naturally arise as a continuous limit of
discrete, long jump random walks, and to recall a simple description of the
integral kernels in terms of the Fourier multipliers.

Singular integrals and nonlocal (especially fractional) operators are a
classical topic in harmonic analysis and operator theory [Lan72, Ste70] and
they are now becoming impressively fashionable because of their connection
with many real-world phenomena.

Indeed, nonlocal operators arise in the thin obstacle problem [Caf79], in
optimization [DL76], in finance [CT04], in phase transitions [AB98, ABS98,
CSM05, SiV09], in stratified materials [SaV09], in anomalous diffusion [MK00],
in crystal dislocation [Tol97], in soft thin films [Kur06], in some models of
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semipermeable membranes and flame propagation [CRS08], in conservation
laws [BKW01], in the ultra-relativistic limit of quantum mechanics [FdlL86],
in quasi-geostrophic flows [MT96, Cor98], in multiple scattering [DG75, CK98,
GK04], in minimal surfaces [CRS07], in materials science [Bat06] and in water
waves [Sto57, Zak68, Whi74, CSS92, CG94, NS94, CW95, dlLP96, CSS97,
CN00, GG03, HN05, NT08, dlLV]. See also [Sil05] for further motivation.

From a probabilistic point of view, such nonlocal operators are related to
Lévy processes [Ito84, Ber96, BG99, JMW05]. A naive example in Section 1
will show a possible probabilistic interpretation. Then, in Section 2, we will
recall an easy recipe for representing the singular integral kernel in terms of
the Fourier symbols. The particular (and particularly interesting) case of the
fractional Laplacian will be discussed in Section 3.

The exposition is self-contained and no prerequisite is needed: a basic
undergraduate math knowledge will suffice. In fact, the main purpose of this
note is to make space-fractional diffusion within range of non-mathematicians
needing it or even to mathematicians at a step of understanding the essentials,
by avoiding the technical subtleties of the hypersingular integrals. The readers
which abhor multidimensional calculations may even consider the case n = 1 in
the sequel.

On the other hand, we refer the expert reader to [GW70, Bre92, GM01,
UG05] for more extensive results on random walk with transition probabilities
of fractional type.

In the rest of this note, we will discard all the multiplicative normalizing
constants. That is, following a convention typical of the lectures on Fourier
analysis, we will write X = Y to mean that there is some normalizing
constant C > 0 such1 that X = CY .

1 Long jump random walks and singular integral kernels

Let K : Rn → [0, +∞) be even, that is K(y) = K(−y) for any y ∈ Rn, and such
that

∑

k∈Zn

K(k) = 1. (1)

Given a small h > 0, we consider a random walk on the lattice hZn.
We suppose that at any unit of time τ (which may depend on h), a particle

jumps from any point of hZn to any other point.
The probability for which a particle jumps from the point hk ∈ hZn to the

point hk̃ is taken to be K(k − k̃) = K(k̃ − k).
We also assume K(0) = 0, so that jumps are forced to happen at any time

step.
Note that, differently from the standard random walk, in this process the

particle may experience arbitrarily long jumps, though with a small probability.

1We hope that no reader is bothered by the fact that this convention implies, for instance,
that 2π = 1. It seems not to be a joke that on February 5, 1897, the House of Representatives
of the State of Indiana unanimously passed a bill which would have supported such a new
mathematical truth [Ind97].
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We call u(x, t) the probability that our particle lies at x ∈ hZn at time t ∈
τZ.

Of course, u(x, t + τ) equals the sum of all the probabilities of the possible
positions x + hk at time t weighted by the probability of jumping from x + hk
to x.

That is,

u(x, t + τ) =
∑

k∈Zn

K(k)u(x + hk, t).

Therefore, recalling the normalization in (1),

u(x, t + τ) − u(x, t) =
∑

k∈Zn

K(k)
(

u(x + hk, t) − u(x, t)
)

. (2)

Particularly nice asymptotics are obtained in the case in which τ = hα and K
is a homogeneous kernel, say, up to normalization factors

K(y) = |y|−(n+α), (for y %= 0 and, say, K(0) = 0), (3)

with
α ∈ (0, 2).

Here and in what follows, | · | denotes the standard Euclidean norm.
We observe that (1) holds (again, up to normalization) and

K(k)

τ
= hnK(hk). (4)

Thus, in this case it is convenient to define

ψ(y, x, t) = K(y)
(

u(x + y, t) − u(x, t)
)

and to use (4) to write (2) as

u(x, t + τ) − u(x, t)

τ
=

∑

k∈Zn

K(k)

τ

(

u(x + hk, t) − u(x, t)
)

= hn
∑

k∈Zn

K(hk)
(

u(x + hk, t) − u(x, t)
)

(5)

= hn
∑

k∈Zn

ψ(hk, x, t).

Since the latter is just the approximating Riemann sum of
∫

Rn

ψ(y, x, t) dy,

by sending τ = hα → 0+ in (5), that is, by taking the continuous limit of the
discrete random walk, we obtain

∂tu(x, t) =

∫

Rn

ψ(y, x, t) dy



36 E. Valdinoci

that is

∂tu(x, t) =

∫

Rn

u(x + y, t) − u(x, t)

|y|n+α
dy. (6)

This shows that a simple random walk with possibly long jumps produces, in
the limit, a singular integral with a homogeneous kernel.

We remark that the integral
∫

Rn

u(x + y) − u(x)

|y|n+α
dy, (7)

which appears in (6) has a singularity when y = 0.
However, when α ∈ (0, 2) and u is smooth and bounded, such integral is

well defined as principal value, that is as

lim
ε→0+

∫

Rn\Bε

u(x + y) − u(x)

|y|n+α
dy.

Indeed, |y|−(n+α) is integrable at infinity and
∫

B1

∇u(x) · y
|y|n+α

= 0

as principal value, because the function y/|y|n+α is odd.
Therefore, we may write the singular integral in (7) as principal value near 0

in the form
∫

B1

u(x + y) − u(x) −∇u(x) · y
|y|n+α

dy

and the latter is a convergent integral near 0 because

|u(x + y) − u(x) −∇u(x) · y|
|y|n+α

!
‖D2u‖L∞ |y|2

|y|n+α
=

‖D2u‖L∞

|y|n−2+α

which is integrable near 0.
It is also interesting to write the singular integral in (7) as a weighted second

order differential quotient.
For this, we observe that, substituting ỹ = −y, we have that the integral

in (7) equals to
∫

Rn

u(x − ỹ) − u(x)

|ỹ|n+α
dỹ. (8)

Therefore, relabeling ỹ as y in (8), we have that

2

∫

Rn

u(x + y) − u(x)

|y|n+α
dy

=

∫

Rn

u(x + y) − u(x)

|y|n+α
dy +

∫

Rn

u(x − y) − u(x)

|y|n+α
dy (9)

=

∫

Rn

u(x + y) + u(x − y) − 2u(x)

|y|n+α
dy.
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The equality obtained in (9) shows that the singular integral in (7) may be
written, up to a factor 2, as an average of the second incremental quotient u(x+
y) + u(x − y) − 2u(x) against the weight |y|n+α.

Such a representation is also useful to remove the singularity of the integral
at 0, since, for smooth u, a second order Taylor expansion gives that

u(x + y) + u(x − y) − 2u(x)

|y|n+α
!

‖D2u‖L∞

|y|n−2+α

which is integrable near 0.
It is known [Sil05] that the singular integral in (7) is related to the fractional

Laplacian (−∆)α/2. This relation will be outlined here below (see, in particular
(14) and (18) below).

It is also interesting to write the displacement of the above random walk at
time nτ , for any n ∈ N. Namely, if hεj ∈ hZn is the jump performed at time jτ
(that is, the “innovation”), the above discussed random walk is made in such a
way that the probability that εj equals k is K(k).

The displacement at time nτ is then the sum of these innovations, that is

n
∑

j=1

hεj .

The β-moment associated to this process is then

∑

k∈Zn

|k|βK(k) =
∑

k∈Zn\{0}

|k|β−n−α,

which is finite if and only if β < α.
In the probability theory framework, this is interpreted as the innovation

being in the domain of attraction of an “α-stable random variable” [ST94].
In particular, the associated variance is not finite, thus reflecting that the

process is not Gaussian.

2 Kernels and Fourier symbols

Given a “nice” (say, smooth and with fast decay, for simplicity) function u, the
long jump random walk of Section 1 has lead us to the study of integrals of the
type

∫

Rn

(

u(x + y) + u(x − y) − 2u(x)
)

K(y) dy, (10)

due to (9).
If we call Lu the integral in (10), one may consider L a linear operator and

look for its “symbol” (or “multiplier”) in Fourier space.
That is, if F denotes the Fourier transform, one may think to write

Lu(x) = F−1
(

S (Fu)
)

, (11)



38 E. Valdinoci

for some function S : Rn → R.
The interesting fact is that K and S are related as follows:

S(ξ) =

∫

Rn

(

cos(ξ · y) − 1
)

K(y) dy, (12)

up to normalization factors.
To check that (12) holds, one simply Fourier transforms (11) in the

variable x, calling ξ the corresponding frequency variable: making use of (10)
one obtains

S(ξ) (Fu)(ξ) = F(Lu)

= F
(

∫

Rn

(

u(x + y) + u(x − y) − 2u(x)
)

K(y) dy

)

=

∫

Rn

(

F
(

u(x + y) + u(x − y) − 2u(x)
)

)

K(y) dy

=

∫

Rn

(eiξ·y + e−iξ·y − 2) (Fu)(ξ)K(y) dy

=

∫

Rn

(eiξ·y + e−iξ·y − 2) K(y) dy (Fu)(ξ)

= 2

∫

Rn

(

cos(ξ · y) − 1
)

K(y) dy (Fu)(ξ),

proving (12).

3 The fractional Laplacian

The fractional Laplacian may be naturally introduced in the Fourier space.
Indeed, one has that

∂ju = F−1
(

iξj(Fu)
)

and therefore
−∆u = F−1

(

|ξ|2(Fu)
)

.

Thus, it is natural to define, for α ∈ (0, 2),

(−∆)α/2u = F−1
(

|ξ|α(Fu)
)

. (13)

It is known [Lan72, Ste70] that such a fractional Laplacian may be also
represented as the principal value of singular integral, namely

(−∆)α/2u =

∫

Rn

u(x) − u(y)

|x − y|n+α
dy, (14)

up to normalizing constants – again, the above integral is intended in the
principal value sense.
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Notice that, by (9), one can also write (14) as

(−∆)α/2u = −
∫

Rn

u(x + y) + u(x − y) − 2u(x)

|y|n+α
dy,

up to normalizing factors.
We give here a simple proof of the equivalence between the definitions in (13)

and in (14).
For this, we observe that, in the notation of (10) and (11), we may write (13)

and (14) as
S(ξ) = |ξ|α and K(y) = −|y|−(n+α).

Therefore, by (12), such equivalence boils down to prove that

|ξ|α =

∫

Rn

1 − cos(ξ · y)

|y|n+α
dy. (15)

To prove (15), first observe that, if ζ = (ζ1, . . . , ζn) ∈ Rn, we have

1 − cos ζ1

|ζ|n+α
!

|ζ1|2

|ζ|n+α
!

1

|ζ|n−2+α

near ζ = 0, therefore
∫

Rn

1 − cos ζ1

|ζ|n+α
dζ is finite and positive. (16)

We now consider the function

J (ξ) =

∫

Rn

1 − cos(ξ · y)

|y|n+α
dy.

We have that J is rotationally invariant, that is

J (ξ) = J
(

|ξ|e1

)

. (17)

Indeed, if n = 1, then one easily checks that J (−ξ) = J (ξ), proving (17) in
this case.

When n " 2, we consider a rotation R for which

R
(

|ξ|e1

)

= ξ

and we denote by RT its transpose. We obtain, via the substitution ỹ = RT y,

J (ξ) =

∫

Rn

1 − cos
(

(R(|ξ|e1)) · y
)

|y|n+α
dy

=

∫

Rn

1 − cos
(

(|ξ|e1) · (RT y)
)

|y|n+α
dy

=

∫

Rn

1 − cos
(

(|ξ|e1) · ỹ
)

|ỹ|n+α
dy

= J (|ξ|e1),
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which proves (17).
As a consequence of (17) and (16), the substitution ζ = |ξ|y gives that

J (ξ) = J (|ξ|e1)

=

∫

Rn

1 − cos(|ξ|y1)

|y|n+α
dy

=
1

|ξ|n

∫

Rn

1 − cos ζ1
∣

∣ζ/|ξ|
∣

∣

n+α dζ = |ξ|α,

up to normalization factors, hence (15) is proved, thus so is the equivalence
between (13) and (14).

We remark that, from (14), the probability density of the limit long jump
random walk in (6) may be written as

∂tu = −(−∆)α/2u. (18)
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